题目

已知数列\(\{a_n\}\)满足条件 \(a_n=a_{n-1}+a_{n-2}\),且 \(a_{15}=1\),记 \(S_n=\sum_{i=1}^n{a_i}\),求 \(S_{26}\)

image-20220418235206458

解法一

将题中数列递推公式移项得到 \(a_{k-2}=a_k-a_{k-1}\),取 \(k=3,4,\cdots,n+2\),累加可得 \(S_n=a_{n+2}-a_2\)(本式也是斐波那契数列的基本性质之一),所以有 \(S_{26}=a_{28}-a_2=a_{15+13}-a_{15-13}\)

\(F_n\)为斐波那契数列,由数学归纳法可以证明:

\[ \begin{align} a_n&=F_{k+1}a_{n-k}+F_ka_{n-k-1}\\ a_n&=(-1)^kF_{k+1}a_{n+k}+(-1)^{k+1}F_ka_{n+k+1} \end{align} \]

取以n为对称心中的下标,将上两式相减,可得:

\[ a_{n+k}-a_{n-k}=\begin{cases} F_k(a_{n-1}+a_{n+1}), & \mbox{if }k\mbox{ is even} \\ \\ (F_{k+1}+F_{k-1})a_n, & \mbox{if }k\mbox{ is odd} \end{cases} \]

下式与本题无关,但作为对称结果,仅在此保留

\[ {\color{orchid} a_{n+k}+a_{n-k}=\begin{cases} F_k(a_{n-1}+a_{n+1}), & \mbox{if }k\mbox{ is } \boldsymbol{odd} \\ \\ (F_{k+1}+F_{k-1})a_n, & \mbox{if }k\mbox{ is } \boldsymbol{even} \end{cases}} \]

\(n=15,\;k=13\)有:

\[ \begin{align} S_{26}&=a_{28}-a_{2}\\ &=a_{15+13}-a_{15-13}\\ &=(F_{14}+F_{12})a_{15}\\ &=521a_{15} \end{align} \]

\(a_{15}=1\)时,\(S_{26}=521\)


本站总访问量